역자주 - 원문의 내용 자체가 IHDP 데이터셋에 대한 설명이나 인과분석 과정에 대한 설명이 생략되어 있습니다.
해당 문서의 주요 목적은 여러 Propensity Score 방법론과 Refute 방법론을 사용하는 코드 레퍼런스를 남기는 것에 있기 때문에 관련 내용에 대한 학습이 필요한 경우 DOWHY KEY CONCEPTS의 성향점수(Propensity Score)와 추정치를 검증하는 방법를 참고하시면 좋습니다.
# importing required libraries : 필요 라이브러리 불러오기
import dowhy
from dowhy import CausalModel
import pandas as pd
import numpy as np
데이터 로드
data= pd.read_csv("https://raw.githubusercontent.com/AMLab-Amsterdam/CEVAE/master/datasets/IHDP/csv/ihdp_npci_1.csv", header = None)
col = ["treatment", "y_factual", "y_cfactual", "mu0", "mu1" ,]
for i in range(1,26):
col.append("x"+str(i))
data.columns = col
data = data.astype({"treatment":'bool'}, copy=False)
data.head()
treatment
y_factual
y_cfactual
mu0
mu1
x1
x2
x3
x4
x5
...
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
0
True
5.599916
4.318780
3.268256
6.854457
-0.528603
-0.343455
1.128554
0.161703
-0.316603
...
1
1
1
1
0
0
0
0
0
0
1
False
6.875856
7.856495
6.636059
7.562718
-1.736945
-1.802002
0.383828
2.244320
-0.629189
...
1
1
1
1
0
0
0
0
0
0
2
False
2.996273
6.633952
1.570536
6.121617
-0.807451
-0.202946
-0.360898
-0.879606
0.808706
...
1
0
1
1
0
0
0
0
0
0
3
False
1.366206
5.697239
1.244738
5.889125
0.390083
0.596582
-1.850350
-0.879606
-0.004017
...
1
0
1
1
0
0
0
0
0
0
4
False
1.963538
6.202582
1.685048
6.191994
-1.045229
-0.602710
0.011465
0.161703
0.683672
...
1
1
1
1
0
0
0
0
0
0
5 rows × 30 columns
1. Model
# Create a causal model from the data and given common causes. : 데이터와 공통 원인으로 인과 모델 생성
xs = ""
for i in range(1,26):
xs += ("x"+str(i)+"+")
model=CausalModel(
data = data,
treatment='treatment',
outcome='y_factual',
common_causes=xs.split('+')
)
2. Identify
#Identify the causal effect : 인과 효과 규명하기
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)
Estimand type: nonparametric-ate
### Estimand : 1
Estimand name: backdoor1 (Default)
Estimand expression:
d
────────────(Expectation(y_factual|x18,x17,x11,x2,x5,x14,x22,x23,x24,x21,x16,x20,x8,x4,x7,x19,x10,x15,x25,x9,x12,x3,x6,x1,x13))
Estimand assumption 1, Unconfoundedness: If U→{treatment} and U→y_factual then P(y_factual|treatment,x18,x17,x11,x2,x5,x14,x22,x23,x24,x21,x16,x20,x8,x4,x7,x19,x10,x15,x25,x9,x12,x3,x6,x1,x13,U) = P(y_factual|treatment,x18,x17,x11,x2,x5,x14,x22,x23,x24,x21,x16,x20,x8,x4,x7,x19,x10,x15,x25,x9,x12,x3,x6,x1,x13)
3. Estimate (using different methods)
3.1 Using Linear Regression
# Estimate the causal effect and compare it with Average Treatment Effect : 인과 효과를 추정하고 ATE와 비교
estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.linear_regression", test_significance=True
)
print(estimate)
print("Causal Estimate is " + str(estimate.value))
data_1 = data[data["treatment"]==1]
data_0 = data[data["treatment"]==0]
print("ATE", np.mean(data_1["y_factual"])- np.mean(data_0["y_factual"]))
*** Causal Estimate ***
## Identified estimand
Estimand type: nonparametric-ate
## Realized estimand
b: y_factual~treatment+x18+x17+x11+x2+x5+x14+x22+x23+x24+x21+x16+x20+x8+x4+x7+x19+x10+x15+x25+x9+x12+x3+x6+x1+x13
Target units: ate
## Estimate
Mean value: 3.928671750872714
p-value: [1.58915682e-156]
Causal Estimate is 3.928671750872714
ATE 4.021121012430829